Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.

Identifieur interne : 000102 ( Main/Exploration ); précédent : 000101; suivant : 000103

Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.

Auteurs : Anurag Kumar [Inde] ; Nutan Chauhan [Inde] ; Shailza Singh [Inde]

Source :

RBID : pubmed:30778378

Descripteurs français

English descriptors

Abstract

Leishmania parasites possess an exceptional oxidant and chemical defense mechanism, involving a very unique small molecular weight thiol, trypanothione (T[SH]2), that helps the parasite to manage its survival inside the host macrophage. The reduced state of T[SH]2 is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione disulfide (TS2). Along with its most important role as central reductant, T[SH]2 have also been assumed to regulate the activation of iron-sulfur cluster proteins (Fe/S). Fe/S clusters are versatile cofactors of various proteins and execute a much broader range of essential biological processes viz., TCA cycle, redox homeostasis, etc. Although, several Fe/S cluster proteins and their roles have been identified in Leishmania, some of the components of how T[SH]2 is involved in the regulation of Fe/S proteins remains to be explored. In pursuit of this aim, a systems biology approach was undertaken to get an insight into the overall picture to unravel how T[SH]2 synthesis and reduction is linked with the regulation of Fe/S cluster proteins and controls the redox homeostasis at a larger scale. In the current study, we constructed an in silico kinetic model of T[SH]2 metabolism. T[SH]2 reduction reaction was introduced with a perturbation in the form of its inhibition to predict the overall behavior of the model. The main control of reaction fluxes were exerted by TryR reaction rate that affected almost all the important reactions in the model. It was observed that the model was more sensitive to the perturbation introduced in TryR reaction, 5 to 6-fold. Furthermore, due to inhibition, the T[SH]2 synthesis rate was observed to be gradually decreased by 8 to 14-fold. This has also caused an elevated level of free radicals which apparently affected the activation of Fe/S cluster proteins. The present kinetic model has demonstrated the importance of T[SH]2 in leishmanial cellular redox metabolism. Hence, we suggest that, by designing highly potent and specific inhibitors of TryR enzyme, inhibition of T[SH]2 reduction and overall inhibition of most of the downstream pathways including Fe/S protein activation reactions, can be accomplished.

DOI: 10.3389/fcimb.2019.00015
PubMed: 30778378
PubMed Central: PMC6369582


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.</title>
<author>
<name sortKey="Kumar, Anurag" sort="Kumar, Anurag" uniqKey="Kumar A" first="Anurag" last="Kumar">Anurag Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Centre for Cell Science, Pune, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Centre for Cell Science, Pune</wicri:regionArea>
<wicri:noRegion>Pune</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chauhan, Nutan" sort="Chauhan, Nutan" uniqKey="Chauhan N" first="Nutan" last="Chauhan">Nutan Chauhan</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Centre for Cell Science, Pune, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Centre for Cell Science, Pune</wicri:regionArea>
<wicri:noRegion>Pune</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singh, Shailza" sort="Singh, Shailza" uniqKey="Singh S" first="Shailza" last="Singh">Shailza Singh</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Centre for Cell Science, Pune, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Centre for Cell Science, Pune</wicri:regionArea>
<wicri:noRegion>Pune</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30778378</idno>
<idno type="pmid">30778378</idno>
<idno type="doi">10.3389/fcimb.2019.00015</idno>
<idno type="pmc">PMC6369582</idno>
<idno type="wicri:Area/Main/Corpus">000159</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000159</idno>
<idno type="wicri:Area/Main/Curation">000159</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000159</idno>
<idno type="wicri:Area/Main/Exploration">000159</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.</title>
<author>
<name sortKey="Kumar, Anurag" sort="Kumar, Anurag" uniqKey="Kumar A" first="Anurag" last="Kumar">Anurag Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Centre for Cell Science, Pune, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Centre for Cell Science, Pune</wicri:regionArea>
<wicri:noRegion>Pune</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chauhan, Nutan" sort="Chauhan, Nutan" uniqKey="Chauhan N" first="Nutan" last="Chauhan">Nutan Chauhan</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Centre for Cell Science, Pune, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Centre for Cell Science, Pune</wicri:regionArea>
<wicri:noRegion>Pune</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singh, Shailza" sort="Singh, Shailza" uniqKey="Singh S" first="Shailza" last="Singh">Shailza Singh</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Centre for Cell Science, Pune, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Centre for Cell Science, Pune</wicri:regionArea>
<wicri:noRegion>Pune</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in cellular and infection microbiology</title>
<idno type="eISSN">2235-2988</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutathione (analogs & derivatives)</term>
<term>Glutathione (metabolism)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Leishmania (genetics)</term>
<term>Leishmania (metabolism)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Spermidine (analogs & derivatives)</term>
<term>Spermidine (metabolism)</term>
<term>Systems Biology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie des systèmes (MeSH)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutathion (analogues et dérivés)</term>
<term>Glutathion (métabolisme)</term>
<term>Leishmania (génétique)</term>
<term>Leishmania (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Spermidine (analogues et dérivés)</term>
<term>Spermidine (métabolisme)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Glutathione</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Iron-Sulfur Proteins</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Glutathion</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Leishmania</term>
<term>Metabolic Networks and Pathways</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Leishmania</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Leishmania</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutathion</term>
<term>Leishmania</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
<term>Systems Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie des systèmes</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leishmania parasites possess an exceptional oxidant and chemical defense mechanism, involving a very unique small molecular weight thiol, trypanothione (T[SH]
<sub>2</sub>
), that helps the parasite to manage its survival inside the host macrophage. The reduced state of T[SH]
<sub>2</sub>
is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione disulfide (TS
<sub>2</sub>
). Along with its most important role as central reductant, T[SH]
<sub>2</sub>
have also been assumed to regulate the activation of iron-sulfur cluster proteins (Fe/S). Fe/S clusters are versatile cofactors of various proteins and execute a much broader range of essential biological processes viz., TCA cycle, redox homeostasis, etc. Although, several Fe/S cluster proteins and their roles have been identified in Leishmania, some of the components of how T[SH]
<sub>2</sub>
is involved in the regulation of Fe/S proteins remains to be explored. In pursuit of this aim, a systems biology approach was undertaken to get an insight into the overall picture to unravel how T[SH]
<sub>2</sub>
synthesis and reduction is linked with the regulation of Fe/S cluster proteins and controls the redox homeostasis at a larger scale. In the current study, we constructed an
<i>in silico</i>
kinetic model of T[SH]
<sub>2</sub>
metabolism. T[SH]
<sub>2</sub>
reduction reaction was introduced with a perturbation in the form of its inhibition to predict the overall behavior of the model. The main control of reaction fluxes were exerted by TryR reaction rate that affected almost all the important reactions in the model. It was observed that the model was more sensitive to the perturbation introduced in TryR reaction, 5 to 6-fold. Furthermore, due to inhibition, the T[SH]
<sub>2</sub>
synthesis rate was observed to be gradually decreased by 8 to 14-fold. This has also caused an elevated level of free radicals which apparently affected the activation of Fe/S cluster proteins. The present kinetic model has demonstrated the importance of T[SH]
<sub>2</sub>
in leishmanial cellular redox metabolism. Hence, we suggest that, by designing highly potent and specific inhibitors of TryR enzyme, inhibition of T[SH]
<sub>2</sub>
reduction and overall inhibition of most of the downstream pathways including Fe/S protein activation reactions, can be accomplished.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30778378</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2235-2988</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in cellular and infection microbiology</Title>
<ISOAbbreviation>Front Cell Infect Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.</ArticleTitle>
<Pagination>
<MedlinePgn>15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fcimb.2019.00015</ELocationID>
<Abstract>
<AbstractText>Leishmania parasites possess an exceptional oxidant and chemical defense mechanism, involving a very unique small molecular weight thiol, trypanothione (T[SH]
<sub>2</sub>
), that helps the parasite to manage its survival inside the host macrophage. The reduced state of T[SH]
<sub>2</sub>
is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione disulfide (TS
<sub>2</sub>
). Along with its most important role as central reductant, T[SH]
<sub>2</sub>
have also been assumed to regulate the activation of iron-sulfur cluster proteins (Fe/S). Fe/S clusters are versatile cofactors of various proteins and execute a much broader range of essential biological processes viz., TCA cycle, redox homeostasis, etc. Although, several Fe/S cluster proteins and their roles have been identified in Leishmania, some of the components of how T[SH]
<sub>2</sub>
is involved in the regulation of Fe/S proteins remains to be explored. In pursuit of this aim, a systems biology approach was undertaken to get an insight into the overall picture to unravel how T[SH]
<sub>2</sub>
synthesis and reduction is linked with the regulation of Fe/S cluster proteins and controls the redox homeostasis at a larger scale. In the current study, we constructed an
<i>in silico</i>
kinetic model of T[SH]
<sub>2</sub>
metabolism. T[SH]
<sub>2</sub>
reduction reaction was introduced with a perturbation in the form of its inhibition to predict the overall behavior of the model. The main control of reaction fluxes were exerted by TryR reaction rate that affected almost all the important reactions in the model. It was observed that the model was more sensitive to the perturbation introduced in TryR reaction, 5 to 6-fold. Furthermore, due to inhibition, the T[SH]
<sub>2</sub>
synthesis rate was observed to be gradually decreased by 8 to 14-fold. This has also caused an elevated level of free radicals which apparently affected the activation of Fe/S cluster proteins. The present kinetic model has demonstrated the importance of T[SH]
<sub>2</sub>
in leishmanial cellular redox metabolism. Hence, we suggest that, by designing highly potent and specific inhibitors of TryR enzyme, inhibition of T[SH]
<sub>2</sub>
reduction and overall inhibition of most of the downstream pathways including Fe/S protein activation reactions, can be accomplished.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Anurag</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>National Centre for Cell Science, Pune, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chauhan</LastName>
<ForeName>Nutan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>National Centre for Cell Science, Pune, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Shailza</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>National Centre for Cell Science, Pune, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Cell Infect Microbiol</MedlineTA>
<NlmUniqueID>101585359</NlmUniqueID>
<ISSNLinking>2235-2988</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>96304-42-6</RegistryNumber>
<NameOfSubstance UI="C044809">trypanothione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U87FK77H25</RegistryNumber>
<NameOfSubstance UI="D013095">Spermidine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007891" MajorTopicYN="N">Leishmania</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013095" MajorTopicYN="N">Spermidine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="N">Systems Biology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fe/S cluster proteins</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">kinetic modeling</Keyword>
<Keyword MajorTopicYN="Y">leishmaniasis</Keyword>
<Keyword MajorTopicYN="Y">redox metabolism</Keyword>
<Keyword MajorTopicYN="Y">systems biology</Keyword>
<Keyword MajorTopicYN="Y">trypanothione</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30778378</ArticleId>
<ArticleId IdType="doi">10.3389/fcimb.2019.00015</ArticleId>
<ArticleId IdType="pmc">PMC6369582</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2000 Feb;35(3):542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10672177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Jul 31;581(19):3598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 17;279(38):39925-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15252045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2000;11(1-2):71-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10705965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Feb 1;58(2):376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Nov;27(9-10):966-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10569629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8764-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1924336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Feb 1;243(3):690-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9057833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Apr;86(8):2607-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2704738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1986 Jun 17;25(12):3519-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3718941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Jan-Feb;30(1):294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21620942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Dec 15;22(24):3067-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 6;276(14):10602-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2011 Mar;240(1):117-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21349090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Oct 1;463(1):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25019503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23249367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Nov 25;269(47):29409-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1997 Aug;378(8):827-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9377478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1987 Apr 1;164(1):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3549299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 5;285(45):35224-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 May;86(10):3639-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2726740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1989;5(4):289-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2798408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Medicina (B Aires). 1999;59 Suppl 2:179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10668262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Enzyme Inhib Med Chem. 2017 Dec;32(1):304-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28098499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2008 Jan;389(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18095866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2007 Dec;156(2):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2001 Mar;382(3):459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11347894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 10;283(41):27785-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2008 Feb;8(1):122-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17727659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1995;49:427-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8561467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 May 27;36(21):6437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9174360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1992;46:695-729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 5;276(40):37133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11479312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2005 Jan;386(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2003 Apr;384(4):539-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12751784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 May 14;398(4):614-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2018 Nov 26;12(11):e0006969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30475811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2014 May;139(1):59-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1996 Oct 1;80(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8892297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Sep 5;227(1):322-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1522596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2010 Jan;169(1):12-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19747949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Jul;29(2):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9720880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 15;16(10):2590-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9184206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2012 May;279(10):1811-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22394478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 22;227(4693):1485-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3883489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D542-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Res. 2003 Jun;90 Suppl 2:S77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12709793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1985 Feb;14(2):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3990705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2002 Jan 15;397(2):324-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11795890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemMedChem. 2013 Jul;8(7):1175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23733388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2015 Jun 04;9(6):e0003773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26042772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Jul;53(7):2824-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Sep 25;258(18):11106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6309830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Kumar, Anurag" sort="Kumar, Anurag" uniqKey="Kumar A" first="Anurag" last="Kumar">Anurag Kumar</name>
</noRegion>
<name sortKey="Chauhan, Nutan" sort="Chauhan, Nutan" uniqKey="Chauhan N" first="Nutan" last="Chauhan">Nutan Chauhan</name>
<name sortKey="Singh, Shailza" sort="Singh, Shailza" uniqKey="Singh S" first="Shailza" last="Singh">Shailza Singh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000102 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000102 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30778378
   |texte=   Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30778378" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020